If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x=40
We move all terms to the left:
2x^2+3x-(40)=0
a = 2; b = 3; c = -40;
Δ = b2-4ac
Δ = 32-4·2·(-40)
Δ = 329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{329}}{2*2}=\frac{-3-\sqrt{329}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{329}}{2*2}=\frac{-3+\sqrt{329}}{4} $
| 1/3=1/r | | (f-12)^2=25 | | 6m^2=13m=28 | | 25x+20=35x | | X-4/2=x/6 | | -8=u/5 | | 1/4x^2=1=0 | | 8s+3s=55 | | 35=5g+2 | | 45=18-4x | | 6(n-1)=4.4n=2 | | 3d+7=2d+19 | | 2x-4(x-3)+6=10 | | -3|m|=-6 | | a2–28a+192=0 | | -11+5x=48 | | .2x+23.6=35 | | 12u^2-5u-28=0 | | .75h+1.75=4.75 | | 3m^2-5m=2=0 | | 49+7v=14v | | 3a+2/2a-4=0 | | (3x+3)=48 | | 6w-12-w+12=5w+1 | | s/20=-4 | | 0=9=7x | | 35+x=8x | | 12-3x=-48 | | 7x+9/7=0.0001 | | 4n+5=2 | | -20=-4/9u | | 2+2(4-4p)=-17-8p |